

#### EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

# **COURSE DESCRIPTION CARD - SYLLABUS**

Course name

**Network Programming** 

**Course** 

Field of study Year/Semester

Computing 1/1

Area of study (specialization) Profile of study

Distributed and cloud systems general academic Level of study Course offered in

Polish Second-cycle studies

Form of study Requirements

full-time elective

**Number of hours** 

Lecture Laboratory classes Other (e.g. online)

30 30

**Tutorials** Projects/seminars

**Number of credit points** 

4

Lecturers

Responsible for the course/lecturer:

Responsible for the course/lecturer:

dr inż. Michał Kalewski

email: Michal.Kalewski@cs.put.poznan.pl

tel: 61 6652370

Faculty of Computing and Telecommunications

ul. Piotrowo 3, 60-965 Poznań

# **Prerequisites**

A student starting this course should have basic knowledge of operating systems, concurrent programming and computer networks. He should also have the ability to obtain information from the indicated sources; should be able to use analytical and experimental methods to formulate and solve engineering tasks and simple research problems; should be able to integrate knowledge from various areas of computer science and apply a systemic approach, also taking into account non-technical aspects. The student should show such features as: honesty, responsibility, perseverance, cognitive curiosity, creativity, personal culture, respect for other people.

# **Course objective**

1. Theoretical and practical aspects of network programming using modern computer networks



# EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 2. Technical solutions currently used in the implementation of network applications: server architectures, network clients and software-defined networking
- 3. Solving common problems encountered by a network application developer
- 4. Configuring protocols and system tools for designing and implementation of network software

#### **Course-related learning outcomes**

#### Knowledge

- 1. has a structured and theoretically founded general knowledge related to key issues in the field of network programming
- 2. has advanced detailed knowledge regarding selected computer networks and network programming issues
- 3. has knowledge about development trends and the most important cutting edge achievements in computer science and other selected and related scientific disciplines
- 4. has advanced and detailed knowledge of the processes occurring in the life cycle of network servers and clients
- 5. knows advanced methods, techniques and tools used to solve complex engineering tasks and conduct research in a selected area of network programming

#### Skills

- 1. is able to obtain information from literature, databases and other sources (both in Polish and English), integrate them, interpret and critically evaluate them, draw conclusions and formulate and fully justify opinions
- 2. can use analytical, simulation and experimental methods to formulate and solve engineering problems and simple research problems
- 3. can when formulating and solving engineering tasks integrate knowledge from different areas of computer science (and if necessary also knowledge from other scientific disciplines) and apply a systemic approach, also taking into account non-technical aspects
- 4. is able to assess the suitability and the possibility of using new achievements (methods and tools) and new IT products
- 5. can carry out a critical analysis of existing technical solutions and propose their improvements (streamlines)
- 6. is able to interact in a team, taking various roles in it
- 7. can determine the directions of further learning and implement the process of self-education, including other people



### EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

#### Social competences

- 1. understands that in the field of IT the knowledge and skills quickly become obsolete
- 2. understands the importance of using the latest knowledge in the field of computer science in solving research and practical problems
- 3. understands the importance of popularization activities concerning the latest achievements in the field of computer science

# Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

#### Summative assessment:

- a) the knowledge acquired in the course of the lecture is verified by a written test. The test consists of 5 open questions. The final grade is determined using the following scale:  $(90\%, 100\%] \rightarrow 5.0$ ,  $(80\%, 90\%] \rightarrow 4.5$ ,  $(70\%, 80\%] \rightarrow 4.0$ ,  $(60\%, 70\%] \rightarrow 3.5$ ,  $(50\%, 60\%] \rightarrow 3.0$ ,  $(0\%, 50\%] \rightarrow 2.0$ .
- b) verification of assumed learning objectives related to laboratories is based on:
- assessment of skills related to the implementation of laboratory exercises and project progress,
- continuous assessment during each class rewarding the increase in the ability to use the learned skills and methods

Getting extra points for activity during classes, especially for:

- proposing to discuss additional aspects of the issue,
- effectiveness of applying the acquired knowledge while solving a given problem,
- ability to work within a team that practically performs a specific task in a laboratory,
- comments related to the improvement of teaching materials.

#### **Programme content**

The lecture program covers the following topics:

- Introduction: a reminder of the material on the layered model of computer networks and basic datagram (UDP) and stream (TCP) IPv4 network sockets
- Network socket buffers and methods and tools for encapsulating application data in stream transmissions
- System options and functions for network sockets and domain name system support
- Programmatic access to data link layer frames (libpcap and libnet libraries) and network packages in the operating system kernel (libnetfilter libraries)



# EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- Raw network sockets for IPv4 and IPv6 protocols and SOCK PACKET and PF PACKET sockets
- Stream Control Transmission Protocol (SCTP) network sockets and multi-stream communication
- Datagram and stream IPv6 network sockets; interoperability of processes using IPv4 and IPv6 protocols; constructions of dual network servers
- Mechanisms and architectures of concurrent network servers: non-blocking network functions; inputoutput multiplexing (select, poll, epoll, and kqueue system functions); network functions triggered by system signals; concurrency with the use of child processes and threads; child process and thread pools; SO\_REUSEPORT mechanism
- Methods and mechanisms of disconnection detection in stream internet communication
- Implementation of internet broadcast and multicast communication using network sockets
- Programming interfaces to manipulate routing and ARP tables and key management network sockets (PF\_KEY type)
- Network sockets interface in Windows (winsock), Windows Phone, Android and iOS operating systems; using network sockets to implement communication in wireless mobile networks
- Network communication support mechanisms in applications with a graphical user interface
- Internet communication implementations using application layer protocols (libcurl library)
- Introduction to SDN (Software-Defined Networking), the OpenFlow protocol and the Mininet emulator; use of the OpenFlow protocol to implement network device controllers in SDN networks
- .The laboratory program covers the following topics:
- Using libpcap, libnet and libnetfilter libraries to implement programs for intercepting data link layer frames and network packets in the operating system kernel
- Implementation of simple routing tools on IPv4 and IPv6 networks using raw network sockets (ICMPv4 and ICMPv6)
- Implementation of client and server applications using SCTP protocol network sockets and multistream connections and performance tests of such connections
- Implementation of client and server applications using IPv6 datagram and stream network sockets; dual server applications IPv4 / IPv6
- Implementation of selected architectures of concurrent network servers
- Implementation of broadcast and multicast communication in internet networks
- Implementations of programs to manipulate routing and ARP tables and ARP



# EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- Implementation of network client applications for selected operating systems of mobile devices, support for the graphical user interfaces and communication in wireless mobile networks
- Using libcurl to implement internet communication using application layer protocols
- Support for the Mininet emulator and implementations of network device controllers in SDN networks using the OpenFlow protocol

#### **Teaching methods**

Lecture: multimedia presentation, illustrated with examples given on the board.

Laboratories: multimedia presentation, illustrated with examples given on the blackboard, and carrying out the tasks given by the teacher - practical exercises.

# **Bibliography**

#### Basic

- 1. UNIX programowanie usług sieciowych. 1, API: gniazda i XTI, Stevens W. R., Wydawnictwa Naukowo-Techniczne, 2002
- 2. Sieci komputerowe TCP/IP. 3, Programowanie w trybie klient-serwer, wersja BSD, Comer D., Stevens D., Wydawnictwa Naukowo-Techniczne, 1997
- 3. Computer Networks, A. S. Tanenbaum, Pearson, 2014

#### Additional

- 1. Data and Computer Communications. Networking and Internetworking, Hura G. S., Singhal M., CRC Press LLC, 2001
- 2. Client/Server Survival Guide, Harkey D., Wiley, 1999
- 3. Wireless Communications and Networks, Stallings W., Pearson, Prentice Hall, 2002
- 4. Algorithms and Protocols for Wireless, Mobile Ad Hoc Networks, Boukerche A., Wiley-IEEE Press, 2008

#### Breakdown of average student's workload

|                                                                                  | Hours | ECTS |
|----------------------------------------------------------------------------------|-------|------|
| Total workload                                                                   | 100   | 4,0  |
| Classes requiring direct contact with the teacher                                | 60    | 2,5  |
| Student's own work (literature studies, preparation for laboratory               | 40    | 1,5  |
| classes/tutorials, preparation for tests/exam, project preparation) <sup>1</sup> |       |      |

<sup>&</sup>lt;sup>1</sup> delete or add other activities as appropriate